

Watershed Boundary Dataset (WBD)

A Multi-Agency Effort to Create a Seamless, Hierarchical and Integrated Hydrologic Units for the Nation

Vision for the geospatial framework for surface water

Follow a drop of water from where it falls on the land, to the stream, and all the way to the

ocean.

What is the Geospatial Framework for Surface Water?

A standard set of Watershed Boundaries (WBD) coupled with a National Stream Network (NHD) and the Topography that dictates the flow of Water across the Land Surface (NED & EDNA)

Geospatial Framework for Surface Water

Sponsored by Federal Geographic Data Committee (FGDC) and Advisory Committee for Water Information (ACWI), Subcommittee for Spatial Water Data Information (SSWD)

Partnering . . .

USFS (WBD) (WBD)

USEPA(NHD,NED-H tools &Stage 2)

NWS
NRCS (NED-H stage 1)

Subcommittee on spatial water data Tools
Standards
Coordination
Pilots
Data sets
Servers

Products

BLM USGS

NOS

State (coastal watersheds)

Partners

(hi-res NHD, NED-H stage 2)

Integration of Key National Datasets

Watershed Boundary Dataset (WBD)

- A single, seamless, hierarchical hydrologic unit dataset based hydrologic mapping principles.
- Consistent base scale of 1:24,000
- GIS dataset with multi-functional attributes
- Served and maintained by a single entity
- Integrated with other key national datasets
- Common reporting unit for different levels of management needs

Overview

Water Accounting

Uninterrupted Depiction of Flow Aggregation of Drainage Area Characteristics

Hydrologic Unit Codes

2-digit=1st level=22 regions
4-digit=2nd level=222 subregions
6-digit=3rd level=789 basins
8-digit=4th level=2223 subbasins

Hydrologic Unit Levels

Hydrologic Unit Level	Name	Digits	Size	Units
1	Region	2	Average: 177,560 sq. miles	21
2	Sub-region	4	Average: 16,800 sq. miles	222
3	Basin	6	Average: 10,596 sq. miles	352
4	Sub-basin	8	Average: 703 sq. miles	2,149
5	Watershed	10	63-391 sq. miles (40,000-250,000 acres)	22,000 (estimate)
6	Subwatershed	12	16-63 square miles (10,000-40,000 acres)	160,000 (estimate)

National WBD Coordination - SSWD

- > Ensure communication between Federal, State, local
- Assess progress in each state
- Offer guidance on delineation method for states
- Ensure compliance with the National Guidelines
- Facilitate edge matching between states
- Provide supplemental datasets that expedite delineations
- Organize and attend workshops and training sessions

Watershed Boundary Dataset (WBD)

Data Availability

- Currently 12 states or territories certified
- Goal 32 states certified by end of December, 2004
- 2005 goal 38 states certified
- Anticipated completion by summer, 2006
- WBD website
 http://www.ncgc.nrcs.usda.gov/branch/gdb/products/watershed/index.html
- Website to download WBD Geospatial Data Gateway http://datagateway.nrcs.usda.gov/GatewayHome.html

Current Status of the WBD

Cooperating Agencies:

USDA Natural Resources Conservation Service

- **U.S. Geological Survey**
- **U.S. Forest Service**
- **U.S. Environmental Protection Agency**

National Oceanic and Atmospheric Administration

- **U.S. Bureau of Land Management**
- **U.S.** Bureau of Reclamation
- **U.S. Corps of Engineers**

Tribal Governments

State Agencies

Local Agencies

Challenges

- > Agency support is highly variable
- Delineation methods vary state to state
- Addressing cooperators needs to preserve existing watershed boundaries
- Inconsistent funding
- Edge-matching

Action Items for the Subcommittee members:

- > Increase awareness in your organizations
- > Help make completion of the WBD a priority
- Assist the Subcommittee with a supported business plan
- Help identify potential funding sources

The Geospatial Framework For Surface Water Exists

But - It needs a substantial effort to reach its full potential,

Many agencies (Federal & State) & private sector are working together to complete the tasks.

What will this Accomplish:

- An appropriate system for referencing of information about:
 - Withdrawal Points
 - Discharge Points
 - Gage Locations
 - Sampling Points
- Providing logical connections: upstream, downstream, and in the watershed

What does it take?

- Consensus definitions/standards (ACWI/FGDC)
- Develop tools
- Apply the tools to create the framework data
- Quality assurance
- Store & disseminate the framework data sets
- Code features to the framework
- Train users
- Maintain the framework data sets

We need a detailed, standardized and hydrologically sound national system of stream and watershed addresses.

Without, it will be tough for the scientific and engineering communities to integrate and deliver water information.

